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Abstract—Radiative transfer in a finite axisymmetric enclosure is investigated for a non-isothermal,
inhomogeneous, absorbing, emitting but non-scattering gas—particle mixture. A random statistical narrow
band model and the Curtis-Godson approximation are used to calculate the real gas radiative properties.
High resolution spectral correlations between the transmissivities of homogeneous and isothermal dis-
cretization column elements are treated by an ellipse correlation model which is validated. A discrete-
direction method is applied to solve the geometrical part of the radiative transfer problem. Applications
to planar and finite axisymmetric geometries show that spectral correlations significantly modify, typically
30-50%, the radiative flux and radiative dissipation in practical systems. Non-correlated models may lead
to inaccurate qualitative predictions (e.g. the radiative flux sign may be reversed).

1. INTRODUCTION

RADIATIVE transfer must be accurately modelled in
practical systems such as combustion chambers,
boilers and furnaces, gas turbine combustors, rocket
and aircraft engines, etc. Many of these systems can be
considered as finite-length axisymmetric enclosures.
Most of the previous studies are related to one-dimen-
sional infinite cylindrical geometries (see ref. [1] for a
literature survey). The works related to finite axisym-
metric enclosures [2, 3] or tri-dimensional geometries
[4] use generally gray gas models, which are not sat-
isfactory except when the diffusion by large size par-
ticles is predominant. Other works use the exponential
wide band model due to Edwards and co-workers [5—
8] for cylindrical systems [8, 9]. The exponential wide
band model accounts for discrete absorption bands
and spectral correlations resulting from the high res-
olution structure. However, the spectral discretization
used in this model is too wide and does not take
into account the low resolution correlations between
intensities and transmissivities [10]; on the other
hand, the case of partially reflecting walls cannot be
correctly modelled with this approach [6). These two
disadvantages are avoided when a statistical narrow
band model is used in radiative transfer calculations
[10-12]. In other works [13, 14], the spectral difficulty
has been treated by using a simplified approach in the
case of an elementary column; total transmittance
data were calculated from a statistical narrow band
model and characteristic temperature and pressure
conditions of the column [13, 14].

We apply in the present study a random statistical
narrow band (RSNB) model [15] and the Curtis—
Godson (CG) approximation [16] to calculate gas
radiative properties. These properties are used to solve
numerically the radiative transfer problem in a finite
axisymmetric enclosure containing an inhomo-
geneous non-isothermal and non-scattering H,O-
CO,~CO-air—particle mixture. The geometrical part
of the radiative transfer problem is treated with a
discrete-direction method. An exact correlated cal-
culation of intensities at all the medium points and
for all the directions is CPU time and storage con-
suming; it is easier to compute, step by step, the
intensity field while not accounting for spectral cor-
relations between column elements of the spatial dis-
cretization. The purposes of this paper are: (i) to in-
vestigate the influence of these correlations; (ii) to
elaborate and validate an approximated ellipse cor-
relation (EC) model based on an exact correlated
calculation for some discrete directions. The cor-
related radiative intensity is obtained from the prod-
uct of the corresponding non-correlated intensity and
a corrective factor given by the EC model.

The basic formulation of the problem, the model-
ling of the mixture radiative properties, and the choice
of spectral, spatial and directional discretizations
are exposed in Sections 2.1, 2.2 and 2.3, respectively.
The ellipse correlation model is developed in Section
2.3.3. Results from this model are compared with
those from an exact calculation for a planar medium
in Section 3.1, and to those from a non-correlated
model for a finite cylindrical system in Section 3.2.
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a coefficient related to wall leaving
intensity contributions
correlation coefficient
distance between the walls in planar
geometry
e unit vector along a coordinate axis
geometrical coefficient
particle volume fraction
medium emission contribution
I, radiative intensity
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NOMENCLATURE

v axial coordinate
transverse coordinate in the plane P,.

t

Greek symbols

g mean line-width to spacing ratio

7 mean half-width of the absorption lines
inside Av

5 equivalent line spacing

€ emissivity

0 angle in a plane P,

I, blackbody intensity y wave number
J,K, M medium grid points Av spectral range
L cylinder length T transmissivity
/ element column length (i angle characterizing the plane P,
N, radial discretization total number Q solid angle.
N, axial discretization total number
Ny 0 discretization total number Subscripts
Ng solid angle discretization total number i wall incident quantity
n unitary normal vector pointed outside k radial discretization
the wall ! wall leaving quantity
p pressure m 0 discretization in the plane P,
P(M) radiative dissipation s related to a wall point S
P, cut plane parallel to the system axis ¥ component in the y-direction
q; incident radiative flux z component in the z-direction
Gw wall radiative flux v spectral quantity.
R largest radius of an axisymmetric system
r radial coordinate Superscripts
ro(») local radius of an axisymmetric enclosure properties averaged over the spectral
S wall grid point range Av
T temperature * non-correlated quantities.
U optical path length
u unitary vector of an elementary solid Index
angle i discretization over the y-direction
X; molar fraction of species i i discretization over the z-direction.
2. ANALYSIS Li,w = 1,100,041 —T)L(T) )

2.1. Basic formulation

The spectrum is divided into a number of Av wide
finite intervals inside which the blackbody intensity
is constant. We consider, in a first step, quantities
averaged over a spectral range Av; e.g. the radiative
intensity 7,(M,n) at a point M in the direction char-
acterized by the unit vector u is

L(M,u) = —A%L 1,(M, w) dv (1)

where I,(M,u) is the spectral radiative intensity at
the same point in the same direction. The radiative
intensity leaving an isothermal and homogeneous col-
umn element of length /, at temperature 7, containing
an absorbing, emitting but non-scattering gas—particle
mixture is given by

where 1,(0,u) and 1,,(7) are respectively the spectral
intensity at the entrance of the column and the spectral
blackbody intensity at temperature T'; 7, is the spectral
transmissivity of the column. Averaged quantities 7,
and t,/,(0,u) are obtained from integrations similar
to equation (1). The averaged product 7,[(0,u) is
not equal to the product 7,/,(0,u) because 7, and
1.(0,u) are spectrally correlated. This correlation
phenomenon is due to the high resolution structure
of the spectrum ; ¢.g. a few hundred resolved lines may
appear in a 25 cm ™! wide range of an absorption band
of CO, or H,0.

For given distributions of temperature T, pressure
P, molar fraction x; of all the gas species and particle
characteristic parameters, the radiative flux g,(S) at
any point S of a diffuse wall and the radiative dis-
sipation P(M) at any point M of the medium can be
calculated from
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PM)= Y {—div[J‘ I_,(M,u)udQ:I}Av €)]
spectrum 4n

and

3. (S) = Y &($){g.(S)—nL,[T(S)N}Av (4)

spectrum

where ¢,(S) and g,,(S) designate respectively the wall
emissivity and incident radiative flux per unit area at
wall point S'; the latter is given by

qiv(S)=JE(S,U)“’ndQ (u-nz=0. (5

In this equation, 7,(S,u) is the incident intensity at
point S from the direction u and n the unitary normal
vector pointed outside the wall. In the case of diffuse
walls, the leaving intensity I,.(S, u) at the wall point S
is not dependent on the direction u and is written as

1—¢,(5)

4.(S).  (6)

Equation (2) enables a step-by-step calculation of the
intensity at any point from the wall leaving intensities
1.(S). Therefore, the incident radiative flux ¢,,(S) is a
function of the leaving intensities at the wall points.
A linear equation system, in which the unknown
quantities are g,,(S) (or 1,), is thus obtained. The
range of this system is equal to the number of wall
discretization points. When this system is solved, the
radiative flux ¢,(S) and the radiative dissipation
P(M) are obtained from equations (2)—(4).

2.2. Radiative properties of the mixture

The main difficulty in real gas radiative transfer
treatment is to calculate the spectral correlated terms
which appear in equation (2). A gray gas model, using
a wave number-independent absorption coefficient,
has no physical meaning. The wide-band model, due
to Edwards and co-workers [5, 6], and derivative
models such as that of Tien and Lowder [7], take into
account spectral correlations but present two dis-
advantages: (i) reflexion by the wall cannot be cor-
rectly taken into account; (ii) the spectral dis-
cretization is too wide and leads to errors in the
radiative flux distribution for an intermediate optical
length medium. Investigations about different radi-
ative band models have been carried out in previous
publications associated with one-dimensional radi-
ative transfer coupled with conduction [11] or with
convection [10, 12]. The most accurate temperature
and flux distributions are obtained with the RSNB
model, due to Mayer and Goody [15], and an
exponential-tailed-inverse line-strength distribution
[17). The transmissivity of an elementary homo-
geneous and isothermal column of length / due to gas
species I, averaged over the spectral range Av, is then
given by
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where x; and P are respectively the molar fraction
of the absorbing species i and total pressure; £ and
F = 275/6 are the band model parameters which take
into account the spectral structure of the gas. Par-
ameters k£ and 1/ may be generated either from exper-
imental spectra (e.g. ref. [18] for H,O) or from a line
by line calculation [11, 19-21] at different tempera-
tures. In the present study we use the previously pub-
lished parameters £ and 1/§ [11, 21], associated with
the mean half-width § given by

P T,
'}THZO = 0066; {7.0)&'“20 7 + [I.Z(XHZQ +XN2)

+0.8x0, +1.6xc0,] \/ (%)} ®

and

_ P T; 0.7
Yco, =F T

x [0.07xco, +0.058(x, +%0,) +0.15%u0]  (9)

where P, and T, designate standard pressure and tem-
perature (1 atm, 296 K).

For a non-isothermal and inhomogeneous column,
the CG approximation {16, 22] leads to accurate
results if pressure gradients are not too large [23]. The
basic idea of this approach consists in the trans-
formation of such a column into an equivalent iso-
thermal and homogeneous one. Effective band model
parameters k, and f, are introduced by averaging £
and f§ over the optical path U of the column

Ul = J:P(M)x,-(M) d (10)

1 4
k = —%L P(M)x,(M)E(M)d] (11)

1 !
Fe o f PONX(DEODFM AL (12)

The transmissivity of this equivalent column is then
calculated from equation (7).

When absorption by different gas species occurs
inside the same spectral range Av, these phenomena
can be considered as not correlated [15]; the trans-
missivity 7% of the mixture column is then the product
of those related to each species.

We consider only particles of characteristic size
smaller than the radiation dominant wavelength ; the
particle spectral absorption coefficient is then given
by [24]

ny
K? = 3617,
361 G + 2 @)

where f, is the particle volume fraction, » and y are

(13)
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the real and imaginary parts of the refractive index,
respectively. As KP has no fine structure inside Av,
absorption by particles is not correlated with that by
the gas; the transmissivity 7, averaged over Av, of a
column element is the product of the transmissivities
78 of the gas and 7° of the particles.

2.3. Radiative transfer model

Temperature, concentration and pressure fields,
and particle characteristics are supposed to be known.
The wall emissivity is assumed to be diffuse but not
necessarily gray. The wall temperature distribution is
also given.

In order to compute the radiative flux and dis-
sipation inside Av, two discretizations are necessary :
(i) a spatial discretization, i.e. the choice of the grid
points where the radiative intensities are calculated ;
(i1) a directional discretization, i.e. the definition of
elementary solid angles AQ around discrete directions
u. The spatial discretization is not consistent with the
directional one ; the axis of an elementary solid angle,
which passes through a grid point, generally does not
pass through another grid point. It is impracticable
to carry out an exact calculation of correlated inten-
sities at all the grid points and for all the discretized
directions; although this calculation is possible for a
one-dimensional planar geometry [10, 11].

The method proposed here consists in: (i) defining
optimal spatial and directional discretizations (Sec-
tion 2.3.1); (i) carrying out a non-correlated cal-
culation of the intensities at each grid point in all the
discretized directions (Section 2.3.2); (iii) taking into
account the spectral correlations at all the grid points
and in all the directions by use of an ellipse correlation
model (Section 2.3.3); this model is based on exact
correlated calculations in particular directions. The
accuracy of this corrective model will be discussed in
the same section.

2.3.1. Spatial and directional discretizations. An
axisymmetric finite enclosure of length L is defined by

(14)

r=r, ) O<y<L)
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where r and y are respectively the radial and axial
coordinates, and r,, designates the radius of a lateral
wall.

The medium grid curves are the circles (y;, ,) which
are the intersections of N, coaxial cylinders called
ry, and a series of planes called y, (i = 1,2,...,N,).
normal to the system axis. The radii of the coaxial
cylinders are r, (k=0,1,2,...,N,) with r, =0 and
rn, = R, radius of the largest cylinder. The wall grid
curves are the intersections between the walls and the
N, planes y; or the N, coaxial cylinders r,.

The directional discretization consists in dividing,
at each point M of the medium, the space into N,
elementary solid angles quoted AQ, (I =1,2,....] No)
and characterized by a unit vector u. If Ny is large
enough, the radiative flux vector is written as

N,

9. (M) = J I,(M,wudQ = Z LQ 1(M,u)udQ
47 {=1 71

7;(M,u)f udQ. (15
1 ALY,

2
gl

1

From any wall point S, of the grid circle (y;, R), we
define N, planes tangent to the coaxial cylinders r,
*k=0,1,2,...,N,—1) quoted P,(R) (Fig. 1). The
angle @,(R) between planes P,(R) and P,(R) is given
by

®(R)=sin"'(r,/R) (k=0,1,....N,—-1). (16)

N, wedges, having the same edge S,y (Fig. 1) and
divided into two equal parts by the plane P,(R), are
introduced. The angles A®,(R) of these wedges are
given by the recurrence relations

ADy(R) = @ ,(R)

A®,(R) = 2[®(R) —~ O 1)(R)] ~ ALy 1) (R).
k=12,...,N=2

AD,(R) = 1/2—[®y_ 1, (R) +0.5AQ,_ ,,(R)],

k=N,—1. (amn

RN
_/_@_4__;__'{*1
+t+t+t=—+—:

——7

Soli,0)

11,0 (10

FiG. 1. Directional discretization of an axisymmetric system and mesh network on the plane P,(R).
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FiG. 2. Discretization of angle ® for the grid points on the cylinder r,. < R. (Radiation fields in the planes
I, (7, ) and P(R) are identical.)

A y—z coordinate system is used in each plane P,(R)
(Fig. 1). Let A, ,,(R) be the propagation direction in
the plane P.(R) characterized by the angle 6,, with
the z-axis, 8,, being arbitrarily chosen in the range
[—m/2,mf2] (m= —Ng,...,—1,1,...,Np). 2N,
angles A8, which are divided into two equal parts
by A, ,(R) are defined by

A8, =26,

A8, = 2[0,,— (O_ 1 +0.5A6,,_,)],
m=2,3,...,Ng—1

A8, = n/2—(0,_,+0.5A0,,_,), m=N,. (18)

A8, m=-1,-2,...,
manner.

A discrete solid angle AQ,,,(R) [AD(R),AB,] is
then associated to each discrete direction A, ,,(R). N,
and N, are large enough to assume that the mean
intensity in the discrete solid angle is correctly rep-
resented by the intensity in the direction A, ,,(R). The
propagation direction A, ,(R) is characterized by a
unit vector in the plane P,

— Nj) is written in a similar

u(0) = e, sinf+e,cosf. 19)

The definition of the discrete direction A, ,(R)
related to point S, of the external cylinder can be
generalized to a current point M of an internal grid
circle (y;,rv), these directions are called A, (r)

(k=0,1,...,k’). The plane containing M and the
tangent to the cylinder 7. is quoted IL.(ry)
(k=0,1,...,k’). The angle between the planes

(r.) and T, (r,) is called ®.(r;;) and is given by
(Fig. 2)

O, (ri) =sin™' (r/re) (k=0,1,...,k"). (20)

The angles A®,(r,,) are defined, by analogy with
A®,(R), by the recurrence relations

A®y(ri) = @ (rw)

AD(ry) = 2[®, (ry) _(D(k— 1)("k')] —A(D(k— 1)(fk'),
k=12,..k. Q1)

The discrete propagation directions A, (r,) at point

M(y,, r,) are then characterized by the angles @.(r, )
and 6,, previously defined.

It is worth noting that in this model, the number
(k’+1) of @ discrete values increases with 7, ; this fact
is consistent with the decrease of the radiative flux
4,(r) when r decreases. On the other hand, the intensity
field in the (k" +1) planes ITi(r,) (k=0,1,...,k") is
strictly identical to that in the plane P,(R) defined
from the wall point S,. Calculations of the radiative
intensities are then only carried out in the N, planes
Pi(R) (k=0,1,...,N,—1). Only the intensities cal-
culated in the planes P,(R) (k =0,1,...,%k") must be
considered for calculations at the point M(y;, 7). The
intensities are calculated at all the grid points of a
plane P (R) for 8 discrete values in the range
[—=/2,7/2]; the intensity at point M in a direction u
characterized by a value of 8 outside this range is
equal to that calculated at the symmetrical point M, in
the symmetrical direction u, characterized by (x—8)
(Fig. 1). Equation (3) is written as

PM=— 3 T T (@-bw)

spectrum k=0 m=-~Ny

{[aZ(M,mk(ry),om) OL(M,, D, (r.), em)]
x +
oy oy

X f f sinfcos 6 d6 d®
IAD, () JAS,,

[aZ(M, D (i), 0,,) aTv(Mx,cbk(rk,),em)]
+ —_
0z oz

x J J cos’0dg d(D}
IA®,(r,) JAd,

where ¢ is the Kronecker symbol. Equation (5) is
similarly written

(22)

I Ny o
q,(S) = z Z (2—0u)1,[S, P(R),0,,]

k=0 m=—N,

x f J. cos®cos’6dOdd. (23)
AD(R) Jas,,
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2.3.2. Radiative intensity field. In the following,
subscript v is left off for the sake of clarity. In a non-
correlated approach, the spectral correlation between
transmissivity and radiative intensity is omitted;
equation (2) can be written as

I*(lu) = 270, 0)+ (1 —)L(T) (24)
where superscript * designates non-correlated quan-
tities. The non-correlated intensities at ali the grid
points of plane P, in the direction u(f) can be cal-
culated step by step from this equation.

The intensity 7*(M, u) at a grid point M (Fig. 1) is
composed of the transmitted part of the intensity
I*(M’,w) at the non-grid point M’ and of the emitted
intensity by the column element between M and M.
The intensity 7*(M’,u) at the non-grid point M’ is
obtained from an interpolation between the intensities
at the neighbouring grid points K and J (Fig. 1);
finally we obtain

(M) = (MM (K, w)+ (1 — £)*(J,0)]

+{1—-T(MM)HL(MM’). (25
In this equation, the transmissivity T7(MAM ") and the
blackbody intensity I,(MM ") are calculated with the
averaged temperature, pressure and concentration of
the column MM’ ; the coefficient f is given by

f =Aztan (0)/Ay (26)
where Ay and Az are the axial and transverse local
steps in the plane P, (Fig. 1). Equations (25) and (26)
are only suitable for 0 < 6 < tan™' (Ay/Az). Similar
equations can be written for other 0 ranges and for
the wall grid points.

The non-correlated intensities at the grid points
of line j are expressed vs the unknown wall leaving
intensities from those of the line j~1; point (i, j) on
line j is treated after point (i—1,;) for # > 0 and
before it for § < 0. For black walls, the wall leaving
intensities are equal to the blackbody ones; the
scheme is then explicit. Otherwise, the following
procedure is used. The non-correlated intensity at
any grid point M(i, j) can be written as a function
of the wall leaving intensities (Section 2.1)

Ny

FMuw) = ) a{M,wI,@+G* (M (27)

where N, is the number of discretized wall points;
a*(M,w) a coefficient related to the contribution of
the intensity I, leaving a wall point § and G*(M, u)
the contribution of the medium emission. These
coefficients are calculated step by step from formulas
similar to equation (25). The initial boundary values
of these coefficients are given by

1,if S and S” designate the same point
0, if S and S’ are two different points

(28a)

ax(S,u) = {

L. ZHANG et al.

G*(S,u) = 0. (28b)

This procedure is followed until the opposite walls
are reached. The incident intensities on these walls are
thus expressed in terms of the wall leaving intensities.
Combining equations (5) and (6), we get a linear
equation system. The resolution of this system gives
the wall leaving intensities and then the non-correlated
intensities at all the medium grid points.

2.3.3. Spectral correlation model. Radiative fluxes
calculated from an RSNB model with the spectral
resolution values Av =25 and 200 cm™' differ by
about 15% [12]. The spectral resolution Ay = 25¢cm ™'
is chosen in the present study.

The exact correlated intensity at any grid point
M(i, j) of plane P, is obtained without interpolation
in the directions Oy and 0z ; e.g. the correlated intensity
I(i, j,e,) at grid point M(i, ) in the direction 0z is
given by

TG, jve.) = 3G, j )G ) + S [ +1))

=@ DM )+ 1 =7 )b, )

where (i, j,) denotes a wall grid point S; 7(i, j’f ) is the
correlated transmissivity of adjacent elements from
M’(i,j") to M(i,j); it is calculated from equations
(7) and (10)—(12); I,(i, j,) is the intensity leaving the
point S(i, j,). It appears that the exact correlated
intensity I(i,j,e,) at grid point M(i,j) cannot be
obtained from the correlated intensity 7(i, j —1.e,) at
the adjacent grid point J(i, j— 1) ; all the intermediate
transmissivities 7(Z, jj ) must be calculated and stored
to make such a correlated calculation. It is time con-
suming to do it for all discrete directions and grid
points. On the contrary, the calculation of non-cor-
related intensities, established in the previous section,
is relatively easy.

We define a corrective factor C(M,u) for the grid
point M and for the direction u(#), calied the cor-
relation coefficient

(29)

(30)

which will be modelled in this section. A planar
geometry is first considered in order to validate this
model with an exact calculation. In the case of a
medium between two parallel infinite walls (Fig. 3),
the non-correlated and correlated calculations have
been carried out for all the directions, different wave
number ranges, different temperature fields and
different optical thicknesses. It appears that C(M, u)
is well approximated in the range [0°,70°] by the
ellipse correlation coefficient C.(M, u) (Figs. 4 and 5)

C.(M,u) = [(C,cos0)*+(C,sin8)*}'*  (31)
where C, and C, are two parameters calculated from
the exact correlation coefficients in the directions char-
acterized by 6 = 0° and 70°. The difference between
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F1G. 3. Planar medium between two parallel walls.

the exact and ellipse correlation coefficients is smaller
than 1% in the range [0°, 70°]. When 6 tends to 90°,
the column length increases, the medium becomes
thick and isothermal in this direction. The correlation
phenomena tend to disappear and C(M, u) tends to 1.

For a two-dimensional axisymmetric system, an
ellipse correlation coefficient C.(M,u) is calculated
from the exact correlation coefficients in the directions

1.0
] —exact
0.84 ~—ellipse
.
0.61 2/E=-0.25
-2 2/E= 0.0
0.44 2fE= .25
0.2 v= 3700 cm-1

0'0 L T T Ll T T T T

00 02 04 06 08 10
Fi1G. 4. Variations of the correlation coefficient C with 6 in
the case of pure water vapour between two parallel walls (the

wall conditions and the medium temperature distribution are
specified in Fig. 6(b).

—exact
~—ellipse

] v=1500 ¢m-1

v=3700 cm-1
0.4
1 7/6=0.0
0.2

08 1.0
F16. 5. Variations of the correlation coefficient C with 8 in
the case of a H,O-N, mixture between two parallel walls

(E=60cm, T, =800 K, ¢ = 0.8, xu,0 = 0.15, xy, = 0.85,
temperature field is given by T(y) = 800+ 1200(1 —ﬁlzl /E)).
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Oy and 0z for each plane P,. It is given at any grid
point M of the plane P, for any direction 6 > 0° by

C.(M,u) = [(C(M,e,)cos0)* +(C(M,e,)sin0)’]"2
(32a)

and for 8 < 0° by
C.(M,u) = [(C(M,e,) cos 0)*

+(C(M, —e,)sin0)*]"> (32b)

where C(M, ¢,) is the exact correlation coefficient for
the direction e;. The validity of this model is discussed
in Section 3.

3. RESULTS

3.1. Planar geometry

Calculations have been carried out in the case of
water vapor between two isothermal parallel walls
(Fig. 3) in order to validate the radiative transfer
model. Results are compared to those of an exact
correlated calculation using the RSNB model and the
CG approximation for the same system [10]. Various
optical thicknesses of the medium characterized by
the distance E between the walls have been considered.
Wall emissivity is assumed to be constant.

Four different models are used to calculate the radi-
ative dissipation distribution P: (i) the exact cor-
related model of ref. [10]; (ii) the present correlated
model for all the discrete directions; (iii) the ellipse
correlated model; (iv) the non-correlated model.
Results from these models are'shown in Figs. 6(a)-
(d). The radiative dissipation P obtained with model
(ii) is in good agreement with that of model (i). In the
case of wall emissivity greater than 0.5, differences
between these two models are lower than 5% in the
centre region, and smaller in the near wall region. In
the case of reflecting walls (¢ = 0.01), these differences
are smaller than 10%.

No significant difference appears between the radi-
ative dissipation P issued from model (ii) and the
ellipse correlated model. The lack of validity of the
ellipse correlated model in the 0 range [70°, 90°] has no
sensitive influence on the radiative dissipation. Two
reasons explain this fact: (a) the difference between
the ellipse and the exact correlation coefficients has
not always the same sign in this range (Figs. 4 and 5);
(b) the contribution of an elementary solid angle to
the radiative dissipation decreases when 6 increases
up to 90°; the contribution of the range [70°, 90°] is
generally lower than 4%.

The non-correlated model overpredicts the radi-
ative dissipation P by about 20-30%. In the region
near the wall the medium absorbs more radiative
energy than it emits (P > 0), while in the centre region,
emission is predominant (P < 0). The non-correlated
model overestimates both absorption in the region
near the wall and the medium emission in the centre
region.

Wall radiative fluxes ¢, calculated with the model
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FiG. 7. Wall and geometrical conditions used in the cylinder calculations.

of ref. [10], with the ellipse correlated model and with
the non-correlated model, are shown in Table 1.
Differences between the two first models are smaller
than the differences related to the radiative dissipation
P. In fact, q, is the integral of P over the range
—E/2 < y < Ef2; the non-correlated model over-
estimates the absolute value of P near the wall (P > 0)
as in the centre region (P < 0). The non-correlated
model also overestimates the radiative flux ¢, by
about 30%.

3.2. Axisymmetric system

The ellipse correlated and non-correlated models
are used to predict the radiative transfer in an axisym-
metric cylinder which is closed at the section y = 0
and open to the atmosphere at the section y = L. Wall
conditions are reported in Fig. 7 (typical conditions
of the combustion chamber of an aircraft engine). For
practical computations, the section y = Lcan be,ina
first approximation, considered as a black wall. The
medium is a H,0-CO,~CO-N,—particle mixture. The
particle spectral absorption coefficient is simplified
from equation (13) [24]

K? = 5.5vf, 33)
where v is the wave number in cm ™! and KP is ex-
pressed in cm~'. In the following, the total pres-
sure is taken equal to 1 atm and the temperature dis-
tribution in the medium is assumed to be

T(r,y) = 800+ 1200(1 —r/R)(y/L). 34)

Table 1. Wall radiative flux in the case of planar geometry
(kW m™?). Temperature distributions are specified in Fig. 6

E=5cm E=5cm E=40cm

Conditions e=05 £=099 =099
Model of ref. [10] 5.113 8.675 6.803
Ellipse correlated model 5.189 8.824 6.533
Non-correlated model 6.270 11.41 7.639

The numerical results reported in this section are
obtained with (N,, N,, Np) = (11, 12, 10).

The radiative flux at the lateral wall calculated with
the exact and the ellipse correlated models are com-
pared in order to validate the latter in the case of a
homogeneous H,O-N, mixture. Results show that the
ellipse and the exact correlated models are in good
agreement (Fig. 8(a)). This agreement is also obtained
in the case of larger optical thicknesses (Fig. 8(b)).
Important overestimations of the radiative flux by the
non-correlated model are observed in the two cases.
The overestimation of the ¢, peak value reaches
90% in the case xpo = 0.15 and 40% in the case
.tzo = 050

4
3 -
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E -1- Non correlated \\
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L

Fig. 8. Lateral wall radiative flux for an axisymmetric
cylinder containing homogeneous H,0O-N, mixtures.
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Radiative fluxes at the walls y = 0, L and r = R are
computed with the ellipse correlated and the non-
correlated models in the case of an inhomogeneous
and non-isothermal H,0-CO,—CO-N, gas mixture
(Fig. 9). The molar fraction distributions are given by

y ’ r
Xpo =005 1-2 Z—-O.S 2—E

y : r

16(y 2 r
xeo = 0.025| 1= 7 =025 ) (157

N, = I~ XH,0 —~Xco, ~Xco- (35)

The non-correlated model predicts a positive value of
q,, for the wall y = 0, while the ellipse correlated one
predicts a negative value (see equation (4) for the sign

Non correloted
Elipse correlated

y/L

e ————
-

S~
-
~—

Non correlated
Ellipse correlated

Non correloted N
1 L Flipse comrelofed %

2
00 0.

02 03 04 0506 07 08 03 10
r/R

F1G. 9. Wall radiative flux in the case of an inhomogeneous
H,0-CO,~CO-N, mixture (equation (35)).
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FiG. 10. Correlated and non-correlated emissivities of the

gas mixture column lying from y =0 to L: xuo = 0.15;
xn, =085 f.=

of q,,). This qualitative disagreement is explained by
the large discrepancies between the non-correlated
and the correlated emissivities of the axis column lying
from y = 0 to L (Fig. 10) ; the flux emitted by the gas,
and then the absorbed fraction by the wall y = 0 are
overestimated in the non-correlated approach; this
results in the change of sign of g,,. The absolute over-
estimation of ¢, by the non-correlated model is prac-
tically identical for all the walls.

The radiative dissipation P in the medium defined
by equations (34) and (35) is plotted vs r/R and y/L in
Fig. 11. Values of P obtained from the non-correlated
model are larger than those obtained from the ellipse
correlated model.

Radiative fluxes at the lateral wall are shown in
Fig. 12 for gas—particle mixtures characterized by
Xno = 0.15, xy, = 0.85 and f, varying from 0 to 107,
The absolute difference between radiative fluxes at the
lateral wall calculated with the ellipse correlated and
the non-correlated models is practically the same for
different values of the particle volume fraction f,. The
lateral wall flux ¢, increases when f, increases up to
10~¢, and then decreases with f,. This phenomenon
is explained as follows: when f, becomes large the
medium becomes thick ; radiation emitted by the hot

£00
O M
~1004
£
Z 200 "
\\ 7
~3004 \\ . ~— Ellipse correlated
- 09 ~~- Non correlated
_400 T T T T T L T i
10 08 06 04 02 00 02 04 06 08 10
r/R
Fic. 11. Radiative dissipation in the same conditions as in
Fig. 9.
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FiG. 12. Radiative flux at the lateral wall for different particle
volume fractions (——, ellipse correlated model ; ~———, non-

correlated model).

mixture in the centre region is not transmitted to
the wall; the radiative flux g,, is then mainly due to
radiation from the medium near the wall. The spectral
ranges related to significant emission by particles and
gas are practically separated. As a result, spectral
correlated and non-correlated fluxes differ sig-
nificantly even for high f, values.
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TRANSFERTS RADIATIFS SPECTRALEMENT CORRELES ET NON CORRELES DANS
UN SYSTEME AXISYMETRIQUE DE DIMENSIONS FINIES CONTENANT UN MELANGE
ABSORBANT ET EMETTEUR GAZ REEL-PARTICULES

Résumé—On étudie le transfert radiatif dans une enceinte axisymétrique finie contenant un mélange de
gaz et de particules anisotherme, hétérogene, absorbant, emetteur mais non diffusant. Un modéle statistique
aléatoire a bandes étroites et 'approximation de Curtis—Godson sont utilisés pour calculer les propriétés
radiatives réelles du gaz. Les corrélations spectrales 4 haute résolution entre les transmittivités des différents
éléments de colonne de la discrétisation supposés homogeénes et isothermes sont traitées par un modéle
utilisant une indicatrice elliptique qui est validé. Une méthode de directions discrétes est utilisée afin de
résoudre la partie géomeétrique du transfert radiatif. En appliquant ce modéle & un milieu plan et a une
géométrie axisymétrique finie, il a apparait que les corrélations spectrales modifient de fagon significative
(typiquement 30 & 50%) le flux radiatif ainsi que la dissipation radiative au sein du milieu dans des systémes
concrets. Les modéles non corrélés peuvent aboutir 4 des prédictions qualitatives erronées (par exemple,
le signe du flux radiatif peut étre inversé).

DER SPEKTRALABHANGIGE UND UNABHANGIGE STRAHLUNGSAUSTAUSCH IN
EINEM FINITEN ACHSENSYMMETRISCHEN SYSTEM, DAS EIN ABSORBIERENDES UND
EMITTIERENDES GEMISCH REALER GASTEILCHEN ENTHALT

Zusammenfassung—Der Strahlungsaustausch in einem finiten achsensymmetrischen Bereich wurde fiir
ein nicht-isothermes, inhomogenes, absorbierendes und emittierendes aber nichtstreuendes Gemisch aus
Gasteilchen untersucht. Zur Berechnung des Strahlungsverhaltens eines realen Gases wird die Curtis—
Godson-Niaherung benutzt. Hochauflosende spektrale Bezichungen zwischen den Durchléssigkeiten von
homogenen und isothermen diskretisierenden Elementen werden mit einem Modell behandelt, das sich auf
Ellipsenbezichungen stiitzt und validiert wurde. Eine Richtungsdiskretisierungs-Methode wird benutzt,
um den geometrischen Teil des Strahlungsaustauschproblems zu 16sen. Ubertragungen auf ebene und finite
achsensymmetrische Geometrien zeigen, dafl die spektralen Zusammenhénge den Strahlungsfluf und
die Strahlungsverteilung signifikant verdndern—typisch im Bereich 30-50%. Nichtkorrelierende Modelle
koénnen zu qualitativ ungenauen Vorhersagen fithren (z.B. Vorzeichenumkehr beim StrahlungsfluB).

CHEKTPAJIbHOE KOPPEJWPOBAHHOE M HEKOPPEJIMPOBAHHOE
PACITPOCTPAHEHME HW3JIYYEHHS B KOHEYHON OCECUMMETPHYHON CUCTEME,
COOEPXAMEN ITOr ICHAIOMYIO U HINYYAIOMYIO CMEChH PEAJIBHOI'O I'A3A K

YACTHL]

Amnoramus—Vccnenyercs pacnpocTpaHeHHe H3Ny4YeHHs B KOHEUHOMEPHOH OCECHMMETPHYHBOMH TIOJIOCTH,
copepxaieil HeM30TCPMUYECKYIO, HEOOHOPONHYIO, MOTJIOMIAIOINYIO H H3TYYaIONIyIo, HO HE PACCCHBAIO-
IIyI0 CMECh Ta3a H 4acTHLL. [I1g pacieTa A3IyYalolHX CBOMCTB PEAbHOTO ra3a HCMONb3YETC XaoTHYeC-
Kad CTATHCTHYECKas Y3KONONOCHas monens u npubmmkenue Keptuca-Toncona. CnexrpasnbHhie
KOppEJIILIMH BBICOKOTO paspellicHas Mexay kKo3hpUIMeHTaMH NPONYCKAHHA ONOPOAHBIX H W3OTEPMH-
4eCKHX JIEMEHTOR Pa3lIe/INTEIILHOM KONOHKH 06paGaThiBaloTCs NPH NOMOIIH YUIMNTHYECKOR KOppess-
WHOHHOM Mozesn. JINd pelueHus TeOMEeTPHYECKOR 4YacTH 3aJa4d pPacHpOCTPAaHEHHA H3JTyYeHHs
NPHMEHSETCA METOA INMCKPETHBIX HanpapieHHA. B ciiydae miock#X # KOHEYHOMEPHBIX OCECHMMETpHY-
HEIX TEOMETPHii NMOKA3aHO, YTO CNEKTPAJbHBIC KOPPEAAlMH 3HAYMTENEHO H3MEHAIOT, B CPEOHEM Ha
30-50%, BeJMUMHY MOTOKA H3NYYEHMS M €rO paccesHUE B NpakTHUeCKHMX cacTémax. Heckoppennposan-
Hhle MOJERH MOTYT JaTh HETOYHHIE K2aUECTBCHHbIE PE3YNBLTATH (HANpHMED, 3HAK NOTOKA H3NydYeHHs
MOXET OKa3aThCA MPOTHBOTIOJIOKHBIM).



